Thermal infrared cameras have reimagined how we perform thermal measurements for research and science testing. In recent years, we’ve seen significant readout and camera electronic advances that push the limits of resolution, speed, and sensitivity. This allows us to solve many of the most difficult thermal testing challenges, such as high speed thermal measurement on air bags, failure analysis on micron-scale electronics, and optical gas imaging on visibly translucent gases. However, it wasn’t until the recent introduction of Type II Strained Layer Superlattice (SLS) that we saw significant advances in thermal imaging. This new detector material brings thermal camera performance in line with their read-out integrated circuit (ROIC) and camera electronic counterparts. The integration of SLS into commercially available thermal cameras offers a new longwave IR solution with significant improvements in speed, temperature range, uniformity, and stability that costs less than analogous detector materials.

Read the full article – PDF