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Abstract 

  
This paper presents advancement of ultra-high speed (UHS) global shutter CMOS image sensor technology exceeding 
100M frames per second (fps). The development of key technologies toward the next generation UHS global shutter CMOS 
image sensor are overviewed, that includes high density analog memory integration, pixel-wise memory array architecture, 
and burst correlated double sampling (CDS) operation. By introducing the newly developed signal readout scheme with 
minimized pixel pulse transitions, a frame period of photo-electrons transit time is achieved. The fabricated chip prototyp-
ing a 3D stacked structure achieved 100Mfps with 80 record length and 125Mfps with 40 record length under room tem-
perature without any cooling systems. 
Keywords: Burst CMOS image sensor, 3D stacking, analog memory, burst correlated double sampling 
  

1. INTRODUCTION 
Time resolution of image sensors is one of the fundamental performances of image sensors. Figure 1 summarizes relation-
ship of performance categories with regards to speed and time resolution of image sensors. For high speed image sensors 
utilized in high speed video cameras, the time resolution is determined by the frame period(1-6). On the contrary for image 
sensors utilized in high speed shutter cameras or lock-in detection cameras such as for time of flight range imaging, fluo-
rescence lifetime imaging and etc(7-8), the time resolution is limited by shutter period or pixel modulation period, which 
can be shorter than the frame period. Both types of sensors have been extensively researched and their time resolution is 
continuously improving by continuous technological breakthroughs.  
Figure 2 shows the speed limiting factors for a typical CMOS image sensor(5). Here, the factor D and E can be eliminated 
by an introduction of burst CMOS image sensors with on-chip multi-frame memories(4). The factor A: the transit time of 
photo-electrons is the ultimate limiting factor for the time resolution(9). Image sensors having multiple photo-electron stor-
age nodes connected in parallel to a photodiode (PD) have been researched for both high speed video camera as well as 
lock-in detection cameras(7-11). Photo-electrons are collected to designated storage node switching one after another by 
multi collection gate (MCG)(10-11) or lateral electric field modulator(8, 12). Here, the time resolution is determined by the 
photo-electrons transit time and the switching time of the charge collection storage nodes, respectively. Very high time 
resolution such as less than 1ns has been obtained by this scheme, however the number of record length is limited. Utili-
zation of multi-aperture system with lateral electric field modulator pixels and coded shutter has been reported to be useful 
to achieve both very high speed such as 200Mfps and record length equal to the number of apertures(13).  
Meanwhile, the 3D chip stacking technology has been a major technology breakthrough in recent image sensor technology 
with regards to performance improvements and adding more functionalities(14-19). Recently a three layers stacked CMOS 
image sensor was reported to be useful to improve the speed by adding DRAM on-chip instead of outputting signal at each 
frame(15). This can be attributed as a digital burst sensor.  
  

  
  

Pixel rate

[pix/s]

Frame rate

[fps]

Number of pixels

[pix]

1

Frame period

[s]

Shutter period/

modulation 

period [s]

Time resolution [s]

(High speed 

shutter camera, 

lock-in camera)

Bit rate

[bps]

Number of bits

[bit]

Time resolution [s]

(High speed 

video camera)
∝

Figure 1. Relationship of performance categories for speed and time resolution of image sensors. 
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Figure 3(a-c) shows examples of signal readout chains with planar and 3D stacked structural conditions for (a) digital 
CMOS image sensors(14-19), (b) burst CMOS image sensors with on-chip analog memories(4, 6, 20-26) and (c) burst CCD 
image sensors with multi-collection gate (MCG)(9-11), respectively. The 3D chip stacking is advantageous for high speed 
image sensors of these types by means of increasing the parallelism as well as shorting the physical distance of signal 
readout paths as well as more freedom of metal wiring and so on. 
We have developed a burst CMOS image sensors with on-chip analog memories that achieved 1Tpixel/s pixel rate, that is, 
10Mfps with 100K pixels and 128 continuous recording length and 20Mfps with 50K pixels and 256 continuous record 
length(4, 6). The developed sensors has been utilized in commercialized high speed video camera: HPV-X and HPV-X2 for 
visualization of various UHS phenomena(20). There is no high speed cameras currently available yet that supports over 
100M fps with long record length such as over 100 with good resolution. This paper presents the advancement and current 
status of our development on UHS global shutter CMOS image sensor technologies realizing over 100Mfps imaging with 
large number of pixels and long record length. 
  

2. Over 100Mfps UHS Global Shutter CMOS Image Sensor 
2.1 Concept of further performance improvements 
Figure 4 shows the schematic illustrations of structures of burst CMOS image sensors with on-chip analog memories, 
where (a) shows the previously developed planar chip structure with on-chip memories placed on the periphery of pixel 
array(4, 6), (b) shows an improved structure of (a) with increased number of pixels and record length to be enabled by high 
density analog memories(21-22), (c) shows a planar structure with pixel-wise analog memory array placed closely each  
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Figure 2. Speed limiting factors of a CMOS image 
sensor. A frame period equals to the factor A is to be 
achieved in this work.  Figure 3. Examples of signal readout chains with planar and 3D stacked 

structural conditions for (a) digital CMOS image sensors, (b) burst 
CMOS image sensors with on-chip analog memories and (c) burst CCD 
image sensors with multi-collection gate (MCG), respectively. 

Figure 4. Schematic illustrations of structures of burst CMOS image sensors with on-chip analog memories; (a) the previ-
ously developed chip, (b) an improved structure of (a) with high density analog memories, (c) a planar structure with pixel-
wise analog memory array placed closely each pixel, and (d) a 3D stacked structure with pixel-wise connections. 
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pixel(23-25), and (d) 3D stacked structure with pixel-wise connections for analog memory array placed beneath each light 
receiving pixel(26). A high density analog memory integration is the primarily important to achieve all of the structures in 
Figure 4(b-c) with a sufficient number of recording frames. The structure shown in Figure 4(b) is beneficial to increase the 
number of pixels especially with small pixel pitch as well as to increase the number of analogy memories per pixel. In 
Figures 4(c) and 4(d), signal wires are much shorter than those of figures 4(a) and 4(b), which is advantageous to increase 
frame rate as well as to reduce power consumption because the load capacitance to readout signal from pixels to analog 
memory become much smaller. In the 3D stacked structure shown in Figure 4(d), the light sensitivity is to be improved by 
an introduction of backside illumination pixel with 100% fill factor. In addition, the number of pixels is more flexibly 
extended as the chip size is nearly equal to the size of pixel array.  
 
2.2 Developed Key Technologies and Prototype Chip Performances 
2.2.1 High Density Analog Memory 
The analog memories employed in the previous works are Metal-Oxide-Silicon (MOS) and/or Poly-Si/Oxide/Poly-Si (PIP) 
capacitors. The capacitance densities of these are typically 4~6 fF/μm2. The thermal noise arising at the analog memory 
capacitors is one of the major noise sources in this type of sensor, thus relatively large capacitance value such as about 
50fF is suitable. The large capacitance value is also advantageous to maintain signal integrity during signal storing period 
toward leakage current. DRAM capacitor is most miniaturized capacitor structure, however the leakage current is several 
order higher than the use of analog signal storage. Consequently, in order to improve the density of analog memory while 
maintaining low leakage current, we have developed a trench capacitor with improved effective capacitance area(21-22). It 
utilizes high integrity thermal oxide film and buried poly-Si electrode formed prior to the shallow trench isolation process 
step. A prototype CMOS image sensor was designed and fabricated having 480 analog memories per pixel as shown in 
figure 5. By tiling up the set of pixel and analog memory array, a structure shown in figure 4(b) is to be obtained. The 
layout and cross section diagrams of analog memory is shown in figure 6. The capacitance density of the developed trench 
capacitor is 30fF/μm2. Here the signal charge is stored at the poly-Si electrode side, and the counter electrode formed by 
an inversion layer and n+ region in silicon substrate side is always grounded. In this way, leakage current as well as parasitic 
light sensitivity due to mixing of photo-induced carriers are suppressed. The developed prototype chip exhibited 10Mfps 
with 960 record length with half pixel mode(22).  

                
 
  
 

2.2.2 Burst Correlated Double Sampling with Pixel-wise Analog Memory Array 
Figure 7 shows the chip micrograph of a fabricated 25H×100V planer prototype chip with pixel-wise analog memory array 
placed closely to each pixel, as illustrated in figure 4(c)(24-25). In order to mimic the 3D stacked structure shown in figure 
4(d), the pixel and analog memory array per pixel share a same effective area. Figure 8 shows the pixel circuit diagram of 
the fabricated chip. The pixel comprises of a high speed charge collection photodiode (PD)(27) directly connected to floating 
diffusion (FD) which converts photoelectrons to signal voltage, reset gate, the 1st source follower circuit to readout floating 
diffusion voltage signal, an in-pixel corrected double sampling (CDS) circuit and the 2nd source follower circuit, switches 
to select or bypass the in-pixel CDS circuit, and a 4H×20V analog memories and its memory addressing and readout circuits. 
The analog memory employs conventional MOS capacitors. The number of analog memories would increase to over 300 
when the trench capacitor was used. The signal output wire length is about 40μm. Compared to our previous chip having 
the signal output wire length of about 8mm it is an over two-digit reduction. Figure 9(a-b) shows the pixel pulse timing 
diagram of the burst corrected double sampling operation and the potential diagram of PD and FD for electrons, respec-
tively(25). The built-in potential gradient or electric field of about 500V/cm is formed in fully depleted PD region by means 

Figure 5. Chip micrograph of a fabricated pro-
totype chip with high density analog memories.  

Figure 6. (a) Layout diagram and (b) cross section diagram of the devel-
oped analog memory with trench capacitors. 
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of dopant concentration difference as well as the control of width of buried n-type layer(27). The PD size is 21.3H×30.0Vμm2. 
A transfer gate can be physically inserted like a conventional 4T-pixel CMOS image sensor, however for the burst CDS 
operation, the potential barrier of transfer gate from PD to FD should be removed by the control of gate bias condition 
during this operation.  The photoelectron transit time of this PD has been verified to be about 5ns by experiments(27). Here, 
the potential top of FD is directly connected to the potential bottom of the PD. In this way, photoelectrons are always 
flowing toward FD. After resetting the PD and FD at t1, the thermal noise (VN) is remained at FD. Right after t1, the first 
signal voltage Vsig1 comprised of VN and light signal due to photoelectrons coming to FD during t2-t1 is readout at t2. Then, 
after the integration period: t3-t2, the second signal voltage Vsig2 comprised of VN and light signal due to photoelectrons 
during t3-t1 is readout at t3. By subtracting Vsig1 from Vsig2 at the in-pixel CDS circuit or off-pixel after reading out memory 
signals, light signal during the integration period t3-t2 is obtained. Here, the integration period is so short such as less than 
1μs for high speed imaging usage, the thermal noise at FD as well as the threshold voltage variation of SF driver are 
removed just like a general CDS operation. In this way, very high speed framerate equal to the photoelectron transit time 
in PD is to be achieved. The number of signal readout after resetting phase can be more than twice unless the FD is 
oversaturated. 
Figure 10 shows the current consumption per pixel for the previous work(6) and this work with in-pixel burst CDS mode 
at 100Mfps and off-pixel burst CDS mode at 125Mfps, respectively. In this work, the third source follower buffer (SF3) 
which is placed in-between the pixel array and memory array is eliminated as well as, the current values of SF1 and SF2 
are reduced. Consequently the current consumption per pixel is significantly reduced compared to the previous work even 
though the framerate is improved, such as less than 1/4 of current even at over 6 times higher frame rate in the case of off-
pixel burst CDS operation mode.  
Figure 11 shows the imaging shooting experimental setup and the sample images of a rotating object captured at 25Mfps 
with in-pixel burst CDS mode and 125Mfps with off-pixel burst CDS mode, respectively. High quality images were suc-
cessfully obtained at 125Mfps without any cooling systems.  
Table I shows the performance summary of the developed prototype chip. The process technology is based on 0.18μm 1-
poly-Si, 5-metal layer technology for both of the chips shown in this paper.  
Figure 12 shows a maximum frame rate as a function of record length to benchmark the developed prototype chip in this 
work with recently reported burst image sensors. Over 100Mfps imaging results with up to 80 record length are demon-
strated in this work. The record length is to be further improved when the developed trench capacitor is employed for 
analog memory of this chip structure.   
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Figure 7. Chip micrograph of a fabricated proto-
type chip with pixel-wise analog memory array.  

Figure 8. Circuit schematic diagram of pixel and analog 
memory array.  

Figure 9. (a) Pixel pulse timing diagram and (b) potential diagram of the burst correlated double sampling operation. 
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3. CONCLUSIONS 
In this paper, key technologies for the next generation UHS CMOS image sensors were presented, including high density 
analog memory integration using trench capacitors with 30fF/μm2, pixel-wise memory array architecture with fully pixel 
parallel and short signal path, and the burst CDS readout operation with minimized pulse transitions. The prototype chip 
with pixel-wise memory array mimicking the 3D stacked chip architecture achieved the frame period of photo-electrons 
transit time in PD, and exhibited 100Mfps with 80 record length with on-chip burst CDS operation and 125Mfps with 40 
record length with off-chip burst CDS operation, respectively. Moreover, the current consumption per pixel was reduced 
to less than 1/4 at over 6 times higher frame rate compared to the previous work, i.e., the developed technology is scalable 
to larger number of pixels. Consequently, the obtained results are promising for achieving over 100Mfps CMOS image 
sensor with high resolution and long record length.  
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