See through the toughest of conditions.

Scandiflash Flash X-ray Systems

Flash X-ray solutions for hypervelocity impact testing.

Experience the Invisible™

Contact us for more information or to schedule a demo today.
Scandiflash Flash X-ray Systems
Flash X-ray solutions for hypervelocity impact testing.

See through the toughest of conditions.

Scandiflash Flash X-ray Systems are designed to see through fire, smoke, metal and other materials during hypervelocity impact testing using short, intense X-ray pulses for high-speed and ultra high-speed imaging. Exposure times ranging from 20–35 nanoseconds and small focal spot sizes produce extremely sharp radiographs for analysis. Our systems feature a wide voltage range and the option of using soft X-rays for optimal penetration and contrast for most applications.

Scandiflash Flash X-ray Container Systems are ideal solutions when testing in the field. Our 20’ ISO containers can be transported and easily setup at remote testing sites. The system is factory installed in a reinforced, insulated and heated container. Everything needed for the system – pulser, X-ray tubes, control tower, cables and more are securely stored within the container during transport and storage.

Contact us for more information about our range of Scandiflash Flash X-ray System models and containers or configuring a flash X-ray system tailored to your unique requirements.

Scandiflash Flash X-ray Systems
Our systems cover a wide voltage range, from 75 kV to 1200 kV and include all necessary gear you need to get the job done right.

<table>
<thead>
<tr>
<th>System Model</th>
<th>150</th>
<th>300</th>
<th>450</th>
<th>450S</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output voltage (kV)</td>
<td>75–150</td>
<td>100–300</td>
<td>150–450</td>
<td>160–480</td>
<td>500–1200</td>
</tr>
<tr>
<td>Output peak current (kA)</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Pulse width (ns)</td>
<td>35</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Dose per pulse at 1 m (mR)</td>
<td>1.6</td>
<td>9</td>
<td>20</td>
<td>25</td>
<td>65</td>
</tr>
<tr>
<td>Penetration of steel at 2.5 m *</td>
<td>3 mm</td>
<td>18 mm</td>
<td>30 mm</td>
<td>34 mm</td>
<td>60 mm</td>
</tr>
<tr>
<td>Source size **</td>
<td>1 mm</td>
<td>1 mm</td>
<td>1 mm</td>
<td>2.5 mm</td>
<td>2.5 mm</td>
</tr>
<tr>
<td>Dual tube option</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

* Scandiflash G Fast intensifying screens and Kodak T-MAT H film (0.7 gross film density). Systems 150, 300, 450 & 450S feature 5 m pulsar to X-ray tube coaxial cable. System 1200 features tube in pulsar.

** Source size may be varied by different anodes. Given values are typical.

Multi-Anode Flash X-ray Tube
Multi-anode tubes are used when closely spaced X-ray sources are needed to minimize parallax. Radiation from the tube is directed onto a fluorescent screen placed behind the subject. The screen converts the radiation into visible light and produces images on the rear side which can be intensified and captured with a high-speed or ultra high-speed camera.

A. Multi-Anode Flash X-ray Tube
B. Target
C. Projectile
D. Gun
E. Fluorescent Screen
F. Intensifier
G. High-Speed/Ultra High-Speed Camera

Target penetration studies with multi-anode Flash X-ray tube: transparent armor projectile, 7.62 x 51 mm AP steel core @ 850 m/s conventional transparent armor without ceramic front. No erosion and deformation of steel core. Image courtesy Fraunhofer EMI.